If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+112x-2000=0
a = 5; b = 112; c = -2000;
Δ = b2-4ac
Δ = 1122-4·5·(-2000)
Δ = 52544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52544}=\sqrt{64*821}=\sqrt{64}*\sqrt{821}=8\sqrt{821}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-8\sqrt{821}}{2*5}=\frac{-112-8\sqrt{821}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+8\sqrt{821}}{2*5}=\frac{-112+8\sqrt{821}}{10} $
| 10.4-1.5x=3.6x-404 | | 81.83+6(x–5)=6.50 | | 22-4x=6(7-x) | | 136+(58-x)=-70 | | 136-(58+x)=-70 | | x(x-9)(2x+3)=0 | | x/x-6-8/x=36/x^2-6x | | x5-6=8 | | X+5+2x+1=36 | | -23-x=-4(x+8) | | 3(3v-4=51 | | 5(-2x+3)-5x=90 | | 3x-7=8×+23 | | -23-x=10(10x-2) | | 50=-5(4y+2) | | 3n+25=4n+29 | | .40=g/22+.146 | | 4(-2)+5=x | | 6t^2-22t+9=0 | | X^2+130x=0 | | 3n+18=2n+27 | | 5=(b+3)/2 | | 2x^2-5=-35 | | x=680-52.2x | | 5=35÷p,p=0 | | 52.2x=680 | | 7(2t+1)-11=t-(t+3) | | 5=35÷p | | x^2(x+2)^2-100=0 | | -49m-11=108 | | 52.2+680=x | | 680x=52.2 |